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ABSTRACT 
In this paper, we introduce three improvements to the BridgeCut 
algorithm introduced in [1]: rank tie breaking, depth bridging 
coefficient, and re-ranking.   

 

1. INTRODUCTION 
The algorithm introduced by Hwang is a very effective technique 
for producing clusters in networks using the concept of bridges.  It 
is an improvement over previous bridge identification methods, 
using a local metric (bridging coefficient) as well as a global 
metric (betweenness).  Idealistically, we would like to create 
clusters that are as large as possible, as long as they meet some 
threshold (in this case, a density threshold).  However, there are 
cases in which the original BridgeCut algorithm provided in [1] 
would split edges or vertices and create lots of small, very dense, 
clusters. Take for example, Figure 1: 

 
Figure 1 

Using definition 4 in [1], we find the bridging centrality of nodes 
u and v: 

𝐶!" 𝑢 = 4  𝑥  2 = 8 

𝐶!" 𝑣 = 3  𝑥  2 = 6 
Assuming a higher rank is preferable, the BridgeCut algorithm 
will split on u and create 3 clusters, each of size 4, that have a 
density of 0.5 and 1 cluster of size 5 with a density of 0.4. 
Now assume that we had a density threshold of 0.25.  If the 
algorithm had split on v, rather than u, BridgeCut would have 
created a cluster of size 13 that had a density of 0.26 and a cluster 

of size 4 that had a density of 0.4.  Both of the clusters meet the 
density threshold, and are larger than the clusters that were 
obtained when using u as the bridge. 

In this paper, we introduce two improvements, rank tie breaking 
and depth bridging coefficient, which will alleviate the original 
BridgeCut algorithm from this predicament. 

The paper is structured as follows: Section 2 will introduce work 
related to the subject of improving bridge detection in graphs.  
Section 3 will describe in detail both the rank tie breaking and 
depth bridging coefficient improvements.  Section 4 will provide 
the metrics used to evaluate the new algorithm.  The next section 
will run the algorithm on real world results and compare to the 
original BridgeCut algorithm and another improved version found 
in [2].  Section 6 will then introduce possible complications with 
the improved approach.  Finally, the paper will conclude with an 
overall summary, caveats to this approach, and future 
improvements. 
 

2. RELATED WORK 
Below are works that used different metrics in order to find ideal 
bridges (and clusters) in networks: 

Kotz and Nanda in [2] introduce the concept of an LCB 
(Localized Bridging Centrality) metric.  Their approach 
substitutes the global betweenness centrality in Hwang’s approach 
for an “egocentric” (local) betweenness centrality metric.    
Although the approach promises higher efficiency, there is no 
guarantee that the “egocentric” (local) betweenness metric is more 
effective than the “sociocentric” (global) betweenness metric. 

Bonaich [3] proposes the idea of using adjacency matrices to find 
central nodes in a network.  A node's centrality is determined by 
the "summed connection to others" (direct neighbors).  Although 
this approach might solve the predicament in the introduction, this 
approach ignores the global perspective of a node’s centrality. 

In "Ranking of Closeness Centrality for Large-Scale Social 
Networks", Oakamoto, Chen, and Li [4] broach the concept of 
closeness centrality.  The closeness centrality of a node is the 
inverse of the average shortest path distance from that node to any 
other node in the network.  Essentially, it looks for nodes that are 
highly connected to other nodes by a short distance.  However, 
like the betweenness centrality, it is mostly a global metric and 
lacks the local perspective that Hwang’s approach includes. 
 

3.  APPROACH 
3.1 Rank Tie Breaking 
In the original paper, there is a chance that multiple vertices (or 
edges) could end up with the same bridging centrality ranking.  
By default, the algorithm chooses the vertex, or edge, that is 
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processed first.  This is not ideal because no heuristics are 
considered in the selection process.  In order to handle this 
dilemma, the following is proposed: 

Assuming multiple vertices have the same bridging centrality 
ranking, we will choose the vertex with the lowest degree.  We 
choose the vertex with the lowest degree assuming the removal 
will create a small amount of large clusters.  If we were to remove 
the vertex with the highest degree, there is a larger possibility of 
multiple small clusters with a density way over the threshold (as 
mentioned in the introduction, we would like large clusters, even 
if it means they barely pass the threshold). 

Assuming multiple edges have the same bridging centrality, we 
will choose the edge that has the lowest average degree between 
the edge’s two nodes for the same reasoning. 

In the unlikely event that the bridging centrality is the same and 
the degrees of the vertices or edges are the same, then the 
algorithm will default to the first-come, first-serve method as 
presented in the original paper.  

3.2 Depth Bridging Coefficient (DBC) 
The objective of the depth-bridging coefficient (DBC) is to 
provide a metric to the BridgeCut algorithm that considers a 
“local” neighborhood instead of just a direct neighborhood. 
We will define the depth-bridging coefficient for a vertex as: 
 

Equation 11 

𝜓! 𝑣 =
1

𝑁! 𝑣
𝛿! 𝑖

𝑑 𝑖 − 1

!

!∈!!

 

 

where 𝑁! are the neighbors of a node at a minimum of depth d (by 
minimum, we imply that if a node has a shorter path to v than d, 
than it is not a neighbor of depth d) and 𝛿! is the number of edges 
leaving the neighborhood of depth d. 
The depth-bridging coefficient for an edge is defined as: 
 

Equation 22 

𝜓! 𝑒 =
𝑁! 𝑖 𝜓! 𝑖 + 𝑁! 𝑗 𝜓! 𝑗

𝑁! 𝑖 + 𝑁! 𝑗 𝐶! 𝑖, 𝑗 + 1
, 𝑒 𝑖, 𝑗 ∈ 𝐸 

 

where 𝑁! are the neighbors of a node at a minimum of depth d 
and 𝐶! is the number of common neighbors for nodes i and j at 
depth d. 

3.3 Re-Ranking 
The BridgeCut algorithm will perform its normal process in 
determining the rankings for all of the nodes, or edges, using 
definitions 4 and 5 in [1], respectively.  However, instead of 
returning the top ranked vertex or edge, we consider the top k 
percent of vertices or edges and run a new ranking calculation: 
 

                                                                    
1At depth 1, the equation is identical to definition 2 in [1]. 
2At depth 1, the equation is identical to definition 3 in [1]. 

Equation 3 

𝑅𝑅𝐶!" 𝑣 = 𝑅!(𝑣) ∙ 𝑅!!(𝑣)
!

!..!

 

 
Equation 4 

𝑅𝑅𝐶!" 𝑒 = 𝑅!(𝑒) ∙ 𝑅!!(𝑒)
!

!..!

 

 
The new ranking algorithm will take into account the bridging 
coefficient at k levels.  Once the re-ranked centrality is performed, 
the algorithm will return the highest-ranking vertex or edge, and 
continue as normal. 

3.4 A Simple Example 
For demonstration purposes, provided below is a step-by-step 
analysis of the vertex re-ranking process on the example graph 
depicted in Figure 1.  As mentioned in section 3.3, the BridgeCut 
algorithm performs its normal process and determine the ranks of 
all the vertices in the graph.  Once obtained, only the top 20% of 
nodes are evaluated for re-ranking: 

𝐶!" 𝑢 = 4  𝑥  2 = 8 

𝐶!" 𝑣 = 3  𝑥  2 = 6 

𝐶!" 𝑎 = 1  𝑥  2 = 2 
𝐶!" 𝑏 = 1  𝑥  2 = 2 

For each of the vertices, the algorithm evaluates the bridging 
coefficient at a max depth of 2.  Since the bridging coefficient for 
a depth of 1 was already obtained during the first phase of the 
algorithm, the calculation for the bridging coefficient at depth 2 
was the only step necessary: 

𝜓! 𝑢 =
1
10

0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +
3
3

= 0.1 

𝜓! 𝑢 =
1
6
3
3
+
3
3
+
3
3
+ 0 + 0 + 0 = 0.5 

𝜓! 𝑎 =
1
3
0 + 0 +

3
3

= 0.333 

𝜓! 𝑏 =
1
3
0 + 0 +

3
3

= 0.333 

Ranking the scores for nodes u, v, a, and b at a depth of 2 returns 
1, 3, 2, and 2 respectively.  The ranks at each depth are then 
summed and multiplied by their respective betweenness 
centrality: 

𝑅𝑅𝐶!" 𝑢 = 4  𝑥  (2 + 1) = 12 

𝑅𝑅𝐶!" 𝑣 = 3  𝑥  (2 + 3) = 15 
𝑅𝑅𝐶!" 𝑎 = 1  𝑥   2 + 2 = 4 

𝑅𝑅𝐶!" 𝑏 = 1  𝑥   2 + 2 = 4 

Clearly, vertex v now out-ranks vertex u.  BridgeCut will choose 
to split on vertex v and return a cluster of size 13 that has a 
density of 0.26 and a cluster of size 4 that has a density of 0.4; our 
original objective. 
 

4. EVALUATION 
Performance of the improved BridgeCut algorithm was evaluated 
using silhouette coefficient, Davies-Bouldin index, and clustering 



coefficient on the original network.  Both silhouette coefficient 
and Davies-Bouldin index are ideal because the modification 
introduced in this paper purely focuses on improving the quality 
of the resultant clusters without any domain knowledge.  
Clustering coefficient is useful for evaluating the vertex and edge 
selection process of the algorithm and can additionally be used to 
compare the original BridgeCut algorithm to the improved 
algorithm presented in this report. 

4.1 Silhouette Coefficient 
Silhouette Coefficient, referenced in “Introduction to Data 
Mining” [7], compares a vertex’s cohesion to it’s own cluster 
versus it’s separation to all other vertices.  To calculate the 
Silhouette Coefficient of a single vertex, the following formula 
can be used: 

Equation 5 

𝑠! =
𝑏! − 𝑎!

max  (𝑏! , 𝑎!)
 

 

where 𝑎! represents the vertex’s distance to all other vertices’ in 
it’s cluster and 𝑏! represents the distance to the center of the 
nearest cluster that is not it’s own.  To find the Silhouette 
Coefficient of a solution, the average of all the vertices’ Silhouette 
Coefficient’s is calculated. 

The metric helps determine if clusters intersect with one another, 
and if so, by how much.  Ideally, clusters will not intersect with 
one another and will be far apart.  Therefore, a solution should 
look to maximize this metric (with a maximum of 1). 

4.2 Davies-Bouldin Index 
Davies-Bouldin index takes in to account the topological quality 
of clusters [1].  For each cluster, it finds a comparable cluster that 
created the worst-case scenario: two large clusters that are very 
close.  Once each cluster is evaluated, it finds the “average” 
worst-case for the clustering solution. 

Equation 6 

𝐷𝐵 =
1
𝑘

𝑚𝑎𝑥!!!
𝑑𝑖𝑎𝑚 𝐶! + 𝑑𝑖𝑎𝑚(𝐶!)

𝑑(𝐶! ,𝐶!)

!

!!!

 

 

Normally, the goal is to minimize this metric; i.e. a clustering 
solution that creates compact, distant clusters.  However, we are 
looking to create “large” (more meaningful) distant clusters.  
Although we are still looking to minimize this metric, there is a 
possibility that the results of the improved algorithm will be 
slightly larger than the normal BridgeCut algorithm due to the 
possible larger cluster size. 

4.3 Clustering Coefficient 
Clustering Coefficient measures the interconnectedness of a 
vertex’s direct neighborhood.  Ideally, a cluster should be highly 
interconnected (maximizing this metric). 

Equation 7 

𝐶! =
2 ∪!,!∈!(!) 𝑒(𝑖, 𝑗)
𝑑(𝑣)(𝑑 𝑣 − 1)

∶ 𝑒(𝑖, 𝑗) ∈ 𝐸 

 

To find the clustering coefficient of a solution, a simple average 
can be calculated over all of the produced clusters. 

4.4 Singleton Dilemma 
Unfortunately, both silhouette coefficient and Davies-Bouldin 
Index are very weak when evaluating singleton clusters.  Neither 
metric properly handles the concept that singletons are not 
desired.  On the contrary, both metrics actually return better 
results with more singletons.  With this under consideration, one 
must note the possible quirks in using these metrics to evaluate 
clusters.   
 

5. RESULTS 
To demonstrate the advantages of the improved BridgeCut 
algorithm, it was compared to the original algorithm and the LBC 
BridgeCut algorithm provided in [2].  The two data sets selected 
to evaluate the algorithms were the “Books about US Politics” [5] 
data set and the  “Les Miserables” [6] data set. 

5.1 “Les Miserables” 
The “Les Miserable” data set is a co-appearance network of 
characters in the novel “Les Miserables”. 

5.1.1 Comparing Bridging Coefficient Depths 
The first step was to determine at which depth the improved 
Bridging Coefficient performed best.  We ran the improved 
BridgeCut algorithm up to a depth of 4 and plotted the results: 

 
Figure 2: Comparing Depths for Vertex Centrality using 

Silhouette Coefficient vs. Density Threshold 

 
Figure 3: Comparing Depths for Vertex Centrality using 

Davies-Bouldin Index vs. Density Threshold 
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Figure 4: Comparing Depths for Edge Centrality using 

Silhouette Coefficient vs. Density Threshold 
 

 
Figure 5: Comparing Depths for Edge Centrality using 

Davies-Bouldin Index vs. Density Threshold 
From Figure 2 and Figure 3, we can clearly see that a depth based 
bridging coefficient was beneficial for vertex centrality based on 
the silhouette coefficient and Davies-Bouldin index.  On average, 
vertex centrality at greater depths outperformed vertex centrality 
using a bridging coefficient at depth one. 

Visually, there didn’t seem to be a distinct difference in the 
varying depths for edge centrality based on Figure 4 and Figure 5.  
However, a close analysis of the raw data revealed that an edge 
bridging coefficient at depths two and three slightly outperformed 
a depth of one. 

Based on these findings, it would appear that the optimal depth for 
both vertex centrality and edge centrality is two for the “Les 
Miserables” data set. 

5.1.2 Comparison of Algorithms 
Once the best depth was chosen, we compared the original 
algorithm, our improved algorithm at the best depth (two), and a 
different improvement deemed “Localized Bridging Centrality” 
presented in [2]. 

 
Figure 6: Comparison of Algorithms for Vertex Centrality 

using Silhouette Coefficient vs. Density Threshold 

Figure 7: Comparison of Algorithms for Vertex Centrality 
using Davies-Bouldin Index vs. Density Threshold 

 
Figure 8: Comparison of Algorithms for Vertex Centrality 
using Clustering Coefficient vs. Nodes Removed (0.7 DT) 
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Figure 9: Comparison of Algorithms for Edge Centrality 

using Silhouette Coefficient vs. Density Threshold 

 
Figure 10: Comparison of Algorithms for Edge Centrality 

using Davies-Bouldin Index vs. Density Threshold 

 
Figure 11: Comparison of Algorithms for Edge Centrality 
using Clustering Coefficient vs. Nodes Removed (0.7 DT) 

On average, the depth BridgeCut algorithm outperformed the 
original BridgeCut and the LBC improvement on all three metrics 
for vertex centrality. According to the clustering coefficient 
metric, the DBC implementation was the only one to constantly 
select “high-valued” nodes (constant positive slope); the other two 
algorithms began to decline after removing approximately 7% of 
the nodes from the original graph. 

There was no notable difference between the algorithms for edge 
centrality.  All the algorithms were on par with one another, with 
depth bridging slightly outperforming the other two according to 
the silhouette coefficient and Davies-Bouldin index.  The LBC 
implementation slightly outperformed the DBC algorithm, but 
both had a constant positive slope, which is desired.  

5.2 “Books About US Politics” 
The “Books About US Politics” obtained from [5] is a network of 
books about recent US politics.  For this data set, we performed 
the same experiments and evaluations with the same parameters. 

5.2.1 Comparing Bridging Coefficient Depths 

 
Figure 12: Comparing Depths for Vertex Centrality using 

Silhouette Coefficient vs. Density Threshold 

 
Figure 13: Comparing Depths for Vertex Centrality using 

Davies-Bouldin Index vs. Density Threshold 
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Figure 14: Comparing Depths for Edge Centrality using 

Silhouette Coefficient vs. Density Threshold 

 
Figure 15: Comparing Depths for Edge Centrality using 

Davies-Bouldin Index vs. Density Threshold 
Once again, the depth bridging coefficient, especially at a depth of 
2, seems to outperform the original algorithm (depth 1) in all 
cases. 

5.2.2 Comparison of Algorithms 

 
Figure 16: Comparison of Algorithms for Vertex Centrality 

using Silhouette Coefficient vs. Density Threshold 

 
Figure 17: Comparison of Algorithms for Vertex Centrality 

using Davies-Bouldin Index vs. Density Threshold 

 
Figure 18: Comparison of Algorithms for Vertex Centrality 

using Clustering Coefficient vs. Nodes Removed (0.7 DT) 

 
Figure 19: Comparison of Algorithms for Edge Centrality 

using Silhouette Coefficient vs. Density Threshold 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Si
lh

ou
et

te
 C

oe
ff

ic
ie

nt
 

Density Threshold 

D1 D2 D3 D4 

0.5 
0.7 
0.9 
1.1 
1.3 
1.5 
1.7 
1.9 
2.1 
2.3 
2.5 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

D
av

ie
s-

B
ou

ld
in

 In
de

x 

Density Threshold 

D1 D2 D3 D4 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Si
lh

ou
et

te
 C

oe
ff

ic
ie

nt
 

Density Threshold 

Original Depth Bridging Localized Bridging 

0 
0.2 
0.4 
0.6 
0.8 

1 
1.2 
1.4 
1.6 
1.8 

2 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

D
av

ie
s-

B
ou

ld
in

 In
de

x 

Density Threshold 
Original Depth Bridging Localized Bridging 

0.48 
0.49 

0.5 
0.51 
0.52 
0.53 
0.54 
0.55 
0.56 
0.57 

0 0.02 0.04 0.06 0.08 0.1 

C
lu

st
er

in
g 

C
oe

ff
ic

ie
nt

 

% Nodes Removed 

Original Depth Bridging Localized Bridging 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Si
lh

ou
et

te
 C

oe
ff

ic
ie

nt
 

Density Threshold 

Original Depth Bridging Localized Bridging 



 
Figure 20: Comparison of Algorithms for Edge Centrality 

using Davies-Bouldin Index vs. Density Threshold 

 
Figure 21: Comparison of Algorithms for Edge Centrality 

using Clustering Coefficient vs. Nodes Removed 
On average, for every metric, the depth bridging centrality 
approach outperformed the original BridgeCut algorithm and the 
localized bridging centrality approach.  We pay careful attention 
to the clustering coefficient evaluation.  For vertex centrality, all 
the algorithms were on par with one another, with the depth 
bridging approach slightly ahead.  The localized bridging 
coefficient seemed to be at a disadvantage for edge centrality.  
Fortunately, depth-bridging centrality performed quite well along 
with the original algorithm. 

6. COMPLICATIONS 
6.1 Efficiency 
An obvious drawback of our approach is the necessity for extra 
computation.  The deeper the desired bridging coefficient, the 
longer the algorithm will take to process.  It is difficult to say if 
this improvement is worth the trade off.  Like most computational 
problems, it is highly dependent on the desired solution: quality or 
efficiency.  

6.2 Betweenness Intervention 
A major flaw in the concept of a depth bridging coefficient is its 
intervention into the betweenness domain.  As we branch farther 
away from the directed neighborhood (large depths), we begin to 
enter a global domain, which is covered by betweenness. 

One way to avoid this issue is keep the depth low.  A depth of 
about two or three would probably suffice for most domains, 
although results may vary depending on the domain. 
 

7. CONCLUSION 
This report introduced three improvements to the original 
BridgeCut algorithm presented by Hwang, Kim, and Ramanathan 
in [1].  Rank tie breaking introduced a heuristic in the rare 
scenario that two vertices or edges had the same rank.  Depth 
bridging coefficient enabled the algorithm to consider a “local” 
neighborhood instead of just a direct one.  Finally, the re-ranking 
process demonstrated how to obtain new ranks for vertices and 
edges using the depth bridging coefficient. 

Based on our results, we can conclude that the improvements 
suggested in this paper are beneficial additions to the original 
BridgeCut algorithm, especially for vertex centrality.  However, 
we should take into careful consideration the depth of the bridge 
coefficient.  For best results, the depth should not exceed two or 
three in most domains. 
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